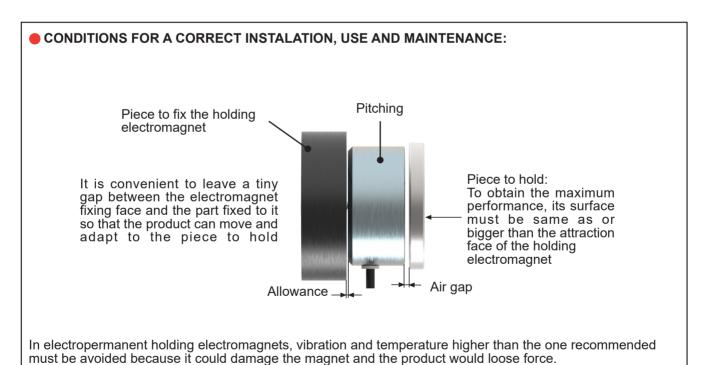
electromagnet fixation


DESCRIPTION:

The holding electromagnets (electromagnetic and electropermanent) are used to attract and hold ferromagnetic

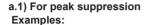
The maximum force efficiency is achieved with the piece to be hold over the attraction's face and in direct contact with both poles (outside pole and inside pole).

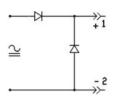
ATTRACTION FASTENING FACE Exterior pole Central pole Flying leads Threaded hole to Coil Carcase

It is not recommended to use holding electromagnets in applications that require an air gap > 0.2mm. The retention force will fall down exponentially when the air gap increases (as can be seen in the data sheet of each product).

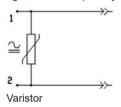
MAINTENANCE:

If the attraction face suffers bumps when working, a reduction of force will occur due to the air gap generated by them, and to recover the initial force, attraction face must be rectified.

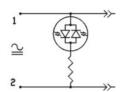

CUSTOMIZATION

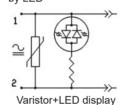

The models described in the catalogue are standard and minimum manufacturing batches are not required. However, there is the possibility of customizing them to suit better customer's needs. See below some of the most common customizations.

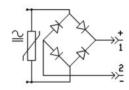
If any modification is needed, please ask NAFSA about the possibility and the minimum manufacturing batch required.

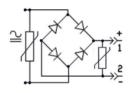

1. ELECTRICAL CUSTOMIZATION

a) Integrated electronics only in versions with DIN43650A connector:

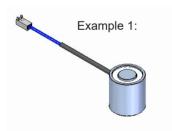


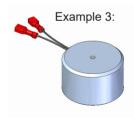

Free wheel diode+second diode to protect the free wheel diode against reverse polarity.


a.2) Power display Examples:


Connector under voltage display by LED

a.3) For rectification Examples:


4 diodes with varistor at the input


4 diodes with doble varistor.

b) Cable length modification and terminal or connector mounted over cables:

In some holding electromagnet models, cables can be replaced by connector DIN43650 or clamping screw (see each serie datasheet). In the holding electromagnet models which have supply cables, this length can be modified to customer requirement. Likewise any kind of terminals or connectors can be added to the cables.

c) Intermediate duty-cycle manufacturing:

In the VEM and ERM are manufactured by default with duty-cycle is 100%, but NAFSA can manufacture any intermediate duty-cycle from 0 to 100, but the viability depends on the model and the voltage associated with it. For any special requeriment, please ask NAFSA.

In the VM and VM/ND series the duty-cycle can not be modified.

2. INSULATION CLASS CUSTOMIZATION:

In the VEM serie, insulation class can be increased until H (180°C).

In the VM and VM/ND, insulation class can be increased until F (155°C).

3. PROTECTIÓN RATE CUSTOMIZATION IP (EN60529):

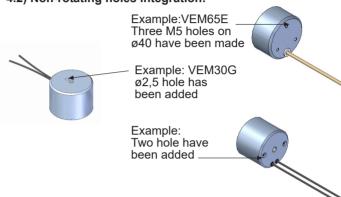
Standard models are IP65, but it can be decreased until IP40 to cheapen production cost.

NOTE: All this customizations cannot be applied to all models, ask NAFSA for each case.

CUSTOMIZATION

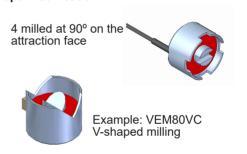
The models described in the catalogue are standard and minimum manufacturing batches are not required. However, there is the possibility of customizing them to suit better customer's needs. See below some of the most common customizations.

If any modification is needed, please ask NAFSA about the possibility and the minimum manufacturing batch required.


4. MECHANICAL CUSTOMIZATION:

The viability of the modifications depends on the model. For any special requeriment, ask NAFSA.

4.1) Fastening holes modification:

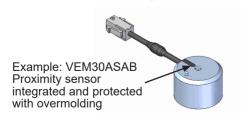

4.2) Non-rotating holes integration:

4.3) Cable or connector position modification:

4.4) Carcase shape modification:

4.5) Antiremanence pins:

Example: VEM80CP Holding plate with damping washer



Example: VEM40CP/2 Holding plate with damping washer on support

4.7) Position detection system:

Example: VM40NDFM Microruptor screwed in the carcase

Example: VEM65DT Magnetic sensor

NOTE: All this customizations cannot be applied to all models, ask NAFSA for each case.

VEM SERIE

The attraction and holding of the magnetic pieces are obtained feeding the winding inside the solenoid. When the power supply stops the electromagnet looses the piece.

When working with loads security norms must be respected.

Protection rate: IP65 Insulation class: B (130°C) Standard voltage: 24 VDC Standard duty cycle: ED100% Other voltages, ED and sizes: Consult

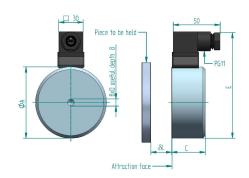
Flying leads for every size.

Supply possibilities under demand: *With campling screw from the VEM25 *With connector from the VEM65. The connector (1) has 4 possibilities of direction (4x90°) and it is possible to be incorporated to the same diodes of rectification for alterning current connection (AC).

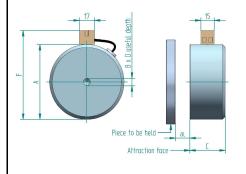
Table 1

TYPE	øA (-0,3)	В	C±0.1	D	Е	F	Weight (Kg)
VEM 20 VEM 25 VEM 30 VEM 40 VEM 50 VEM 65 VEM 80 VEM 100 VEM 150	20 25 30 40 50 65 80 100 150	M-3 M-4 M-5 M-5 M-8 M-8 M-10 M-16	12 20 22 26 30 35 38 43 56	5 6 8 8 12 12 15 24	 112 127 147 197	40 45 55 65 80 95 115	0.02 0.06 0.10 0.20 0.30 0.80 1.30 2.10 6.40

Table 2


Table 2								
TYPE	P at 20°C	e (mm)		Air ga	p (mm)	δι		
III	(W)	· (,	0	0,1	0,2	0,5	1	
VEM20	1.6	1 3	14.5 27	3.8 5.7	1.6 2.6	0.3 0.35		
VEM25	3.2	1 3 6	27 114 135	19 47 50	12 20 21	3 3.5 3.7		
VEM30	4	1 3 6	37 170 190	24 80 90	18 40 45	6 9.5 12	1.5 1.6 2	
VEM40	5.6	1 3 6	38 300 400	30 203 245	24 133 160	13 27 30	4 4.5 5	(N)
VEM50	6.5	1 3 6	40 320 500	32 235 370	30 185 240	20 65 68	15 16 20	orce Fm
VEM65	10	1 3 6 10	45 310 830 980	40 290 660 750	35 250 500 560	25 148 164 190	15 40 46 50	Magnetic Force Fm (N)
VEM80	15	1 3 6 10	65 430 1150 2000	42 360 970 1350	40 325 830 1000	30 230 375 420	20 90 110 125	M
VEM100	20	1 3 6 10	70 530 1400 2600	50 440 1200 2200	45 426 1050 1700	35 335 730 880	25 225 310 330	
VEM150	40	3 6 10 18	700 1810 5800 7104	580 1650 4350 5760	550 1580 3910 4992	480 1400 3000 3840	390 1100 1850 2400	

e (mm): Thickness of the piece to hold


Flying leads: Ref: VEM (type)-V - ED% Example: VEM 65-24Vdc- ED100% Attraction face Leads length=200mm В ØA.

Connector (C): Ref: VEM (type)/C-V-ED% Example: VEM65/C-24Vdc ED100%

see documentation that is enclosed with the material

Clamping screw (B): Ref: VEM(type)/B-V-ED% Example: VEM50/B-24Vdc-ED100%

The table 2 gives for each type of holding magnet, the values of the force of maintenance (Fm) based on the air gap, measured in the following conditions:

- -Direct current supply.
- -Flat piece ($3\mu m$ rugosity) in A°St37, thickness as shown in the table 2 and dimensions are similar or bigger than the attraction face. -Room temperature 35°C.
- -Coil working on its regime temperature.

At different conditions, the magnetic force (Fm) may decrease. The value of the magnetic remanence after the power supply stops is 5% of the holding force.

- Earthing is recommended if the metallic parts are accessible.
- *Technical explanation: see pages 4 & 5.
- 'Under demand: any size, voltage, duty cycle etc can be manufactured.

When lifting or handling heavy loads a minimun security margin of 3 must be respected, the weight of the load cannot exceed 33% of the magnetic force.

ERM SERIE

The attraction and holding of the magnetic pieces are obtained by feeding the winding inside the solenoid. When the power supply stops, the solenoid looses the piece.

When working with loads, security norms must be respected.

Protection rate: IP65
Insulation class: B (130°C)
Nominal Voltage: 24VDC
Standard duty cycle: ED100%

Other voltages, ED and sizes: Consult

Table 1

TYPE	Α	В	С	D	Е	F	Н	N° of holes	Compresion gland	Weight(kg)
ERM100/35	125					10		2		0.9
ERM150/35	175					10		3		1
ERM200/35	225					10		4		1.5
ERM400/35	425	35±0.3	34±0.1	25	50	12	M-6	8	PG-9	2.8
ERM500/35	525					12		10		3.5
ERM600/35	625					12		12		4.5
ERM150/60	180			40	70			2		2.3
ERM200/60	230	60±0.1	49.5±0.2	40	120	12	M-8	2	PG-11	3
ERM500/60	530			70	120			4		7.8

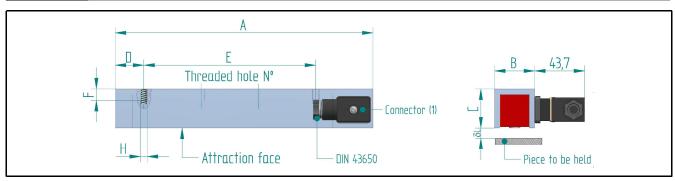


Table 2

TYPE	P at 20°C	e (mm)		Ai	rgap (m	m)		
TIPE	(W)	, ,	0	0,1	0,2	0,5	1	1
ERM100/35	10	1 3 6 10	32 396 604 752	22 308 320 468	12 120 190 238	8 45 52 60	6 8 12 18	
ERM150/35	14	1 3 6 10	65 769 1090 1450	50 580 657 904	30 220 368 490	21 82 90 116	14 17 21 35	
ERM200/35	18	1 3 6 10	80 928 1400 1758	60 720 810 1108	42 260 460 690	28 94 121 136	14 20 27 46	
ERM400/35	30	1 3 6 10	172 2100 3060 3810	131 1460 1722 2371	91 537 962 1297	60 210 263 304	35 45 60 93	Fm (N)
ERM500/35	45	1 3 6 10	210 2323 3540 4423	150 1806 2100 2745	100 674 1114 1501	60 234 295 330	36 56 70 117	Magnetic force Fm (N)
ERM600/35	53	1 3 6 10	226 2653 4053 5026	173 2053 2266 3120	90 706 1286 1806	66 266 346 400	40 66 80 120	agnetic
ERM150/60	25	1 3 6 10	140 780 1800 1900	112 680 1490 1500	102 600 1100 1250	75 445 610 650	50 180 200 210	Σ
ERM200/60	40	1 3 6 10	205 1130 2550 2760	165 990 2160 2300	155 890 1800 1870	116 680 884 900	72 250 280 300	
ERM500/60	75	1 3 6 10	553 3150 7250 7450	440 2630 5870 5950	397 2320 4650 4820	310 1800 2380 2410	190 780 850 910	

The table 2 gives for each type of holding magnet, the values of the force of maintenance (Fm) based on the air gap, measured in the following conditions: -Direct current supply.

-Flat piece (3μm rugosity) in A°St37, thickness as shown in the table 2 and dimensions are similar or bigger than the attraction face.

-Room temperature 35°C.

-Coil working on its regime temperature.

At different conditions, the magnetic force(Fm) may decrease. The value of the magnetic remanence after the power supply stops is 5% of the holding force.

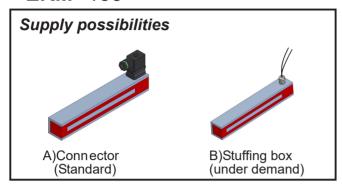
- Alternating current connection (AC): Only for sizes ERM150/60 to ERM500/60.

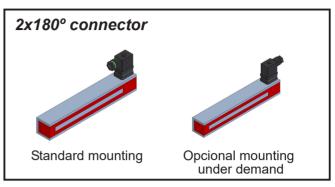
- Earthing is recommended if the metallic parts are accessible.

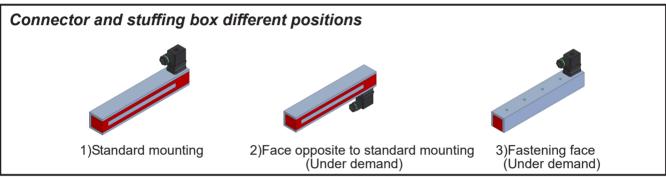
- Mounting, supply possibilities and ordering code: page 104.
- Technical explanations: see pages 4 & 5.
- Under demand: any size, voltage, duty cycle etc can be manufactured.

Ordering code: Size--V ED---%
Voltage: 24Vdc; Duty cycle: ED100%
ERM150/35 24Vdc 100%
For other configurations see page 104

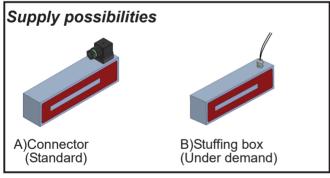
e= Thickness of the piece to hold

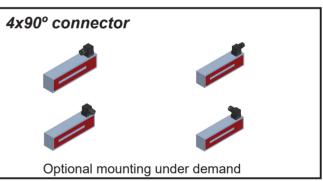

When lifting or handling heavy loads a minimum security margin of 3 must be respected, the weight of the load cannot exceed 33% of the magnetic force.

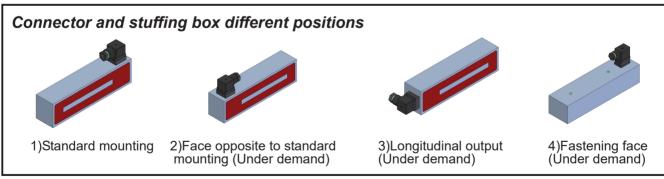



ERM SERIE

Mounting and supply possibilities for rectangular holding electromagnet


ERM --/35





ERM --/60

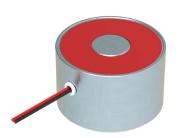
Ordering code:

Size; Supply possibilities; Positioning; Voltage; Duty-cycle;

Example: ERM200/35 A2 24Vdc 100% (Connector in the opposite face to standard mounting)

ERM200/60 B4 24Vdc 50% (Stuffing box in the fastening face)

IMPORTANT: Under demand orders can be delayed in the delivery



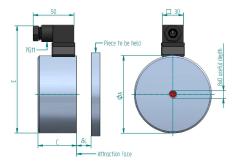
VM SERIE

The attraction and holding of magnetic pieces are made by permanent magnets mounted in the electromagnet, with these kind of products we avoid the risk of load falling down due to sudden power supply failure. The power supply on the coil allows to loose the load, when this power supply stops, the product recovers its initial force.

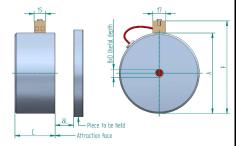
When working with suspended loads, security norms must be respected.

T. I. I.

Protection rate: IP65 Insulation class: **B** (130°C)
Standard voltage: **24VDC**Standard duty cycle: **ED100**%
Different voltage, ED or size: **Consult**


Flying leads for every size Supply possibilities under demand: .With campling screw from the VM25

With connector from the VM65.
The connector (1) has 4 possibilities of direction (4x90°) and it is possible to be incorporated to the same diodes of rectification for alterning current connection (AC).


Table 1							
TYPE	øA (-0,3)	В	C±0.1	D	Е	F	Weight(Kg
VM 20 VM 25 VM 30 VM 40 VM 50 VM 65 VM 80 VM 100 VM 150	20 25 30 40 50 65 80 100 150	M-3 M-4 M-5 M-5 M-8 M-8 M-10 M-16	25 27 28 30 35 40 45 50 65	5 5 5 6 6 8 8 10 15	 112 127 147 197	 40 45 55 65 80 95 115 165	0.04 0.06 0.17 0.24 0.44 0.74 1.42 2.20 6.60

Flying leads: Ref: VM (type)-V - ED% Example: VM 50-24Vdc- ED100%
Piece to be held
Attraction face
B Leads Length: 200mm
Connector (C): Ref: VM (type)/C-V-ED% Example: VM65/C-24Vdc ED100% Connection:

see documentation that is enclosed with the material

Clamping screw (B): Ref: VM(type)/B-V-ED% Example: VM50/B-24Vdc-ED100%

Important: the clamping screw does not have to exceed measure D

TYPE	P at 20°C	Thickness of the	Air	gap (mm)	δι	
1117	(W)	piece to hold (mm)	0	0.1	0.2	
VM20	2.6	1 3 10	18 18 18	5 5 5	1 1 1	
VM25	4.3	1 3 10	20 23 29	7 7 10	3 4 7	
VM30	4.5	1 3 10	24 45 52	10 10 14	5 6 7	
VM40	7	1 3 10	39 108 128	29 57 58	22 29 37	Fm (N)
VM50	10	1 3 10	43 129 226	30 110 125	28 75 80	Force
VM65	14	1 3 10	44 266 374	35 203 238	25 140 145	Magnetic Force Fm (N)
VM80	18	1 3 10	44 294 588	35 267 362	25 217 256	Ma
VM100	25	1 3 10	45 299 1000	35 282 745	25 262 519	
VM150	45	1 3 10	93 415 2000	75 350 1500	60 320 1300	

The table 2 gives for each type of holding magnet, the values of the force of maintenance (Fm) based on the air gap, measured in the following

Holding magnet without voltage.

-Flat piece (3μm rugosity) in A^oSt37, thickness as shown in the table 2 and dimensions are similar or bigger than the attraction face. -Room temperature 35°C.

-Coil working on its regime temperature.

At different conditions, the magnetic force(Fm) may decrease. The value of the magnetic remanence after the power supply stops is 5% of the holding force.

.Earthing is recommended if the metallic parts are accessible. .Technical explanation: see page 4 & 5.

Under demand: any size, voltage, duty cycle etc can be manufactured.

When lifting or handling heavy loads a minimum security margin of 3 must be respected, the weight of the load cannot exceed 33% of the magnetic force.

VM/ND SERIE

The attraction and holding of the magnetic pieces are made by permanent magnets mounted in the solenoid. With these kind of products, we avoid the risk of load falling due to sudden power supply failure. The power supply on the coil allows to loose the load, when this power supply stops, the product recovers its initial force.

When working with suspended loads, security norms must be respected.

Protection rate: IP65 Insulation class: Y (90°C) Standard voltage: 24VDĆ Standard duty cycle: See chart Different voltage, ED or size: Consult

Supply possibilities:

Flying leads for every size: VM20/ND, VM30/ND, VM40/ND: 1x0.25mm2 VM50/ND, VM65/ND, VM100/ND: 1x0.5mm2

VM150/ND: 2x0.75mm2

Under demand: any size, voltage, duty cycle

etc can be manufactured

Т	a	hl	e	1
	ч	\sim		

TYPE	øA (-0,3)	В	C(±0,1)	D	E	Weight(Kg)
VM 20/ND	20	M-3	25	5	26	0.04
VM 30/ND	30	M-4	32.5	6	35.2	0.13
VM 40/ND	40	M-5	41.7	6	42.7	0.28
VM 50/ND	50	M-5	42.8	6	52.5	0.45
VM 65/ND	65	M-8	45.5	8	67	0.74
VM 100/ND	100	M-10	67	10	102	3.00
VM 150/ND	150	M-16	65	15	152	7.10

Flying leads ΦA

Feeding mode to take off the workpiece:

Voltage: 24Vdc Polarization:

Red lead +VDC / Black lead -VDC

Important: the clamping screw does not have to exceed measure D

	P	ED	Minimum pulse	Resting time	e (mm)	Air g	ap (mm) δι	
TYPE	(W)	(%)	(ms)	(ms)	(mm)	0	0.2	0.5	
VM20/ND	10	20	24	180	1 3 10	22 39 39	7 7 7	1,7 1,7 1,7	
VM30/ND	25	20	110	825	1 3 10	46 181 181	34 74 74	22 22 22	(
VM40/ND	42	15	75	743	1 3 10	51 205 270	36 89 89	23 38 38	Fm (N)
VM50/ND	48	15	120	1188	1 3 10	60 304 607	41 200 225	34 95 110	c force
VM65/ND	80	15	225	2228	1 3 10	70 374 1220	50 340 750	40 260 400	Magnetic force
VM100/ND	75	25	150	1500	1 3 10	83 421 2205	61 365 1254	49 338 686	2
VM150/ND	77	40	285	1070	1 3 10	78 615 2254	46 475 1490	32 401 1100	

e (mm): Thickness of the piece to hold

The table 2 gives for each type of holding magnet, the values of the minimum pulse time and resting time measured in the following conditions:

· With a weight of 5% of the maximum magnetic force made by each model

Coil working on its regime temperature.

The table 2 gives for each type of holding magnet, the values of the force of maintenance (Fm) based on the air gap, measured in the following conditions:

-Holding magnet without voltage. -Flat piece (3μm rugosity) in A°St37, thickness as shown in the table 2 and dimensions are similar or bigger than the attraction face.

Room temperature 35°C.

-Coil working on its regime temperature.

At different conditions, the magnetic force(Fm) may decrease.

The value of the magnetic remanence after the power supply stops is 5% of the holding force. Earthing is recommended if the metallic parts are accessible.

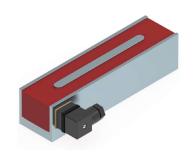
Technical explanation: see pages 4 & 5.
Under demand: any size, voltage, duty cycle etc can be manufactured.

Under demand an internal protection can be added to the coil to protect it of the overheating, generated by the no respecting of the times given by the duty cycles, this overheating can demagnetize the internal magnet or destroy the coil changing the proper working of holding magnet.

When lifting or handling heavy loads a minimum security margin of 3 must be respected, the weight of the load cannot exceed 33% of the magnetic force.

Ordering code:

VM(size)/ND --V ED---%
VM50/ND; Voltage: 24Vdc; Duty cycle: ED15%; Ref.: VM50/ND 24Vdc ED15%
VM50/ND with protection; Voltage: 24Vdc; Duty cycle: ED15%; Ref.: VM50/ND_WP 24Vdc ED15%



ERMI 200-60 TYPE

The attraction and holding of the magnetic pieces are made by permanent magnets mounted in the solenoid.

With these kind of products, we avoid the risk of load falling due to sudden power supply failure. The power supply on the coil allows to loose the load, when this power supply stops, the product recovers its initial force.

When working with suspended loads, security norms must be respected.

Protection rate: IP65
Insulation class: Y (90°C)
Standard voltage: 24VDC
Standard power: 250W
Standard duty-cycle: ED15%
Solenoid weight: 4.7 kg

Supply possibilities:

Connector standard

- Alternating current connection (AC):

The connector offers the possibility of incorporating rectifying diodes

- Under demand: other possibilities of input can be manufactured.

If any changes from the original (see drawing), please contact.

- Electric connection of the connector: see documentation that is enclosed with the material
- Earthing is recommended if the metallic parts are accessible.
- Technical explanations: see pages 4 & 5.

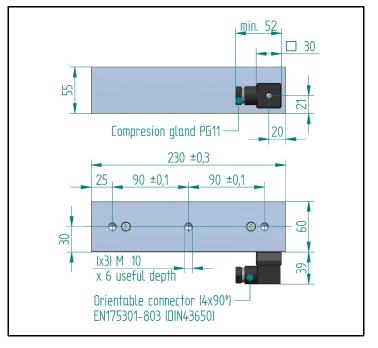


Table 1

Thickness of the		Air gap (mm) δ ι							
piece to hold(mm)	0	0.1	0.2	0.3	0.4	0.5	1] <u>E</u>	
1	250	210	190	180	165	160	140	ce F	
3	1350	1250	1150	1100	1000	925	570	For	
6	2350	2000	1750	1400	1200	1100	590	etic	
10	2800	2450	2150	1900	1600	1400	700	ğ	
18	3000	2550	2300	2000	1700	1500	800	Ma	

For these holding electromagnet correct working the minimum pulse and resting time must be respected:

- Minimum pulse time: 300ms
- Minimum resting time: 5000ms

The values of the minimum pulse time and resting time measured in the following conditions:

- Coil working on its regime temperature.
- Piece weight: 2 Kg (it is not recommended to use these holding electromagnet for lower weights)

The table 2 gives for each type of holding magnet, the values of the force of maintenance (Fm) based on the air gap, measured in the following conditions:

- -Holding electromagnet without voltage.
- -Flat piece (3μ m rugosity) in A o St37, thickness as shown in the table 2 and dimensions are similar or bigger than the attraction face.
- -Room temperature 35°C.
- -Coil working on its regime temperature.

At different conditions, the magnetic force(Fm) may decrease. The value of the magnetic remanence after the power supply stops is 5% of the holding force.

When lifting or handling heavy loads a minimum security margin of 3 must be respected, the weight of the load cannot exceed 33% of the magnetic force.

Ordering code:

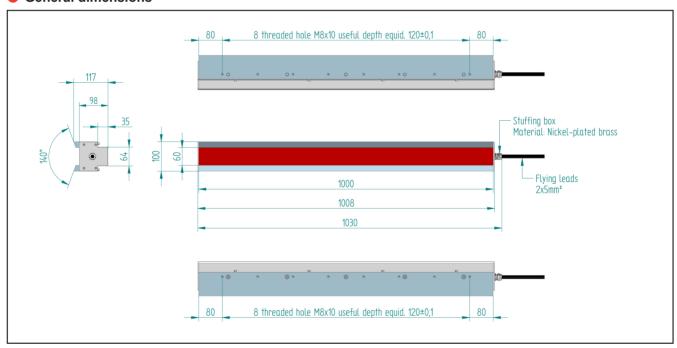
Ref.: ERMI200/60 24Vdc ED15%

BP 1000-10 TYPE

It is a bipolar holding electromagnet with 1000mm of effective surface. The face is made with an angle to work with different pieces between ø120mm y ø250mm.

The attraction and holding of the magnetic pieces is obtained by feeding the coil inside the electromagnet. When the power supply stops the electromagnet looses the piece. When working with loads security norms must be respected.

Protection rate: IP65
Insulation class: B (130°C)
Standard voltage: 24Vdc
Standard duty cycle ED: 100%
Abs. power at 20°C: 217W
Temperature rise "DV31" 40°C
Solenoid weight: 47Kg


Maximum keeping force

ø Round bar (mm)	Force N/mm	Force N (for bar => 1000mm)
ø120-ø200	5.4	5400
ø250	8	8000

The forces values are obtained with the electromagnet at its working temperature and with the piece to be held in contact with whole attraction surface

- 1)To feed in alterning current the electromagnet will have an external rectifier.
- 2)It can be manufactured at any voltage, duty cycle, connection etc. Also other sizes for different applications.
- 3)Ground connection is recommended if to the metallic parts are accessible.

General dimensions

 Λ

When lifting or handling heavy loads a minimum security margin of 3 must be respected, the weight of the load cannot exceed 33% of the magnetic force.

Ordering code: BP1000/100 -- V ED---%

Voltage:24Vdc; Duty-cycle: ED100% BP1000/100 24Vdc ED100%